EPJ Web of Conferences 214, 07008 (2019) https://doi.org/10.1051/epjcont/201921407008
CHEP 2018

Containerized Batch System Monitoring

1x* 2

Andreas Gellrich? ©, Thomas Hartmann , Birgit Lewendel' ©, David Prelogovi¢

, and Christian Voss'**

'DESY, Notkestrake 85, D-22607 Hamburg, Germany
2University of Zagreb, Croatia

Abstract. Running a batch system for grid jobs and for local users, we
investigate a generic solution to monitor the resource usages of jobs.
We extend a standard toolkit for monitoring container performance
metrics also for non-containerized applications, so that we can make
easy use of a popular industry solution. By concentrating on the basic
kernel features also used by containers frameworks, we envisage to use
the same tools on non-containerized batch systems as well as container
orchestrators.

For deployment, we encapsulate the tools as Singularity containers and
distribute them via CVMFS.

1 Introduction

Since microservices in the form of containers have become en vogue, various moni-
toring tools have been developed. While such tools are primarily focused on Docker
as the framework with the largest following, these tools can also be used for a more
generic approach.

As Containers are based on standard Linux kernel features employed to encapsulate
processes in Linux namespaces and cgroups, container monitoring tools can be reused
more generically for any kernel resources in cgroups. While containers and container
orchestration frameworks are becoming established as Local-Resource-Management-
Systems (LRMS) alongside traditional batch systems, batch systems as HTCondor
[1, 2] or SLURM [3] are prevalent in the HEP world, where workloads of the Grid
computing communities have evolved along these. Since nowadays both, batch sys-
tems and container frameworks, use the same kernel features for resource management
and control, it becomes feasible to refit and establish off-the-shelf monitoring tools for
existing LRMSes. We chose Google’s cAdvisor [4] as lightweight tool without further
dependencies and a rich REST API.

We distribute cAdvisor and our Logstash-based aggregation script as Singularity [5]
containers via CVMFS [6] for an easy and fast deployment along the lines of estab-
lished system requirements in the grid world.

Aiming for portability, configuration parameters are controlled via environment vari-
ables.

*e-mail: thomas.hartmann@desy.de
**e-mail: christian.voss@desy.de

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 07008 (2019) https://doi.org/10.1051/epjcont/201921407008
CHEP 2018

While the container for aggregating job statistics is primarily aligned to HT'Condor,
support for other batch systems, which use cgroups for resource management, could
also be added to the aggregation container or handled by a separate aggregation tool.
For easier interchangeability of database engines, we stick to JSON formatted data
[11] to structure job details. Locally, we use ElasticSearch [14] for information storage
and information retrieval, which itself uses Apache Lucene as back-end [13].

2 Motivation

DESY operates HTCondor! clusters with ~15 000 cores dedicated to grid workflows
as well as ~9 000 cores for batch processing by users in the National Analysis
Facility (NAF) [7, §].

Where the grid aims for large scale bulk processing of data and Monte Carlo event
simulations, the NAF is targeted on a more interactive work-flow with a fast turn-
around of user jobs. Storage back-ends are based on several dCache instances? [10] for
long-term storage and on a fast scratch space called DUST based on IBM’s Spectrum
Scale file system [9].

For both use cases, visual job profiling simplifies the analysis and debugging of per-
formance and failures. For the bulk production in most of the Grid workflows, the
local site admin can gather a quick overview of failing job tasks from the experiments
by mapping the global job IDs in the experiment workload management systems to
the local batch systems. E.g., figure 1 shows the job memory profiles of an active
node, which were used to identify the jobs that sent their host node into swapping.
Equivalently in the NAF use case, individual users could generate an overview of their
jobs spread over time as well as over batch system nodes instead of working through
all jobs’ logfiles to gather an overview of the jobs’ performances (provided that some
kind of pilot process had been logging the performance alongside the actual job).

3 Data Aggregation

We use cAdvisor to gather basic system statistics on process trees, which are confined
in cgroups, i.e., batch jobs and their child processes for which the HTCondor daemon
created separate cgroup sub-slices. cAdvisor itself can export the current system
statistics as JSON objects. Per node, we have cAdvisor read the job statistics and
add to cAdvisor’s JSON object our own additional information, which we gathered
from the Condor batch system. The expanded job statistics are then sent to our
central Elastic Search? [14] cluster and are visualized with Kibana as UL

IHTCondor on development version 8.7.8
2instances at versions 4.2.X, being updated on a regular basis to current release versions
3Elastic Search cluster on version 6.2.4

EPJ Web of Conferences 214, 07008 (2019) https://doi.org/10.1051/epjcont/201921407008
CHEP 2018

Actions»

® UXOKDMDCTZENNIDN)

Max stats.memory.usage

Figure 1. Memory usage profiles of grid jobs, identified here by their compute element’s
ARC ID, on a node, which started to swap. Kibana was used for visualization of the data
from an ElasticSearch database.

3.1 cAdvisor: cgroup Statistics

As cAdvisor already brings its own driver for exporting statistics to Elastic Search,
in the most basic approach cAdvisor could gather and forward cgroup metrics to the
database. But as we have potentially additional interesting knowledge at hand on
a node, e.g., the batch system’s job details, we intercept the metrics before storing
them.

Since cAdvisor is primarily aimed at monitoring containerized applications, it is
deployed itself as Docker [16] container. Since we do not necessarily use Docker as a
container engine and consider the installation and maintenance of Docker on batch
nodes an unnecessary potential security risk due to the Docker daemon running
under the root context, we decided to deploy cAdvisor as Singularity container? due
to its more lightweight approach.

The conversion of the cAdvisor docker container into a Singularity container is
straight forward, as the actual cAdvisor application is a Go binary with hardly any
dependencies on the container OS and environment®. cAdvisor runs as a Singularity
container without problems and we applied only minor tweaks to the container’s
environment settings, optimizing it for our use case. Since cAdvisor has to have read
access to all process information in the /proc and cgroup virtual file system mounts,

4Singularity version 2.6.1 installed on batch system nodes
5We based the Singularity container on the latest production release of cAdvisor on Dockerhub,
which was v0.27.4 during writing

EPJ Web of Conferences 214, 07008 (2019) https://doi.org/10.1051/epjcont/201921407008
CHEP 2018

the container has to be run in the root context® with cgroup bind-mounted in the
container’s namespace’ .

In addition to its JSON export, cAdvisor can also publish the the current system
status and cgroup resource usages via an integrated web server as shown in Figure 2.
Thus, cAdvisor can also be used for a quick overview on a node’s current utilization.
In production, we run the cAdvisor container as systemd service

started after the mnetwork and HTCondor services as requirements.

racksystem slicecndor sarvicacendor_var_llb_coodor_sxecube_sich_2@ibalchi201 dezy.de

Isolation

3.2 Batch System Parameters
Since cAdvisor is agnostic towards
container engines or other cgroup han- ————

dlers, the raw cAdvisor statistics do i

not contain any batch system job G

specifics. Thus, we extend cAdvisor’s
raw cgroup statistics by batch job de-
tails.

We wrote a Python script to aggregate
cAdvisor and batch system statistics.
The script reads HTCondor batch job v

information details from the file sys- n A

. : e e S e
tem as well as the jobs process details Yal
Created at Stal‘t under /proc/{PID}/. pree] T4530 Tan85FM .m;ucc-m 34013 P 4030 FM

Usage per Core

This information is combined with the
cAdvisor cgroup details. The script it-
self is executed by a Logstash service, ;
reads cAdvisors’s metrics for the ag-

gregation script, and forwards the re- N

sulting enriched job infos to a Elastic Usage Breakdown

Search instance. o
We wrap Logstash and the aggrega- L

tion script in another Singularity con- s

tainer. Executed regularly®, the con- Cmen v e e Teen e

Wouser Wkerer

tainer will try to read the current Memory
statistics from the running cAdvisor et fiosae
container, process them and forward
the extended JSON object. The con-
tainer can be configured via environ-
ment variables, e.g., the address of the s senen seem e smvm o e
ElasticSearch cluster, so that no local Usage Breakdown

configuration files are necessary and R

the container can be run out-of-the-
box after setting the environment vari-
ables.

Megaytes

Figure 2. cAdvisor view on a 8-core HT-
Condor batch job’s current resource usage.

SWhen run as a native Docker container, cAdvisor needs to be run as exposed and privileged
container as well to have access to all necessary information in the virtual file systems.

"Mount suggestions for cAdvisor as Docker container can be applied to its avatar as Singularity
container.

8We use a timectl unit to run the container regularly and define dependencies on other systemd
units, but any other cron-like scheduler as cron or condor cron should be working as well.

4

EPJ Web of Conferences 214, 07008 (2019) https://doi.org/10.1051/epjcont/201921407008
CHEP 2018

To take the European Data Protection

Rules (GDPR) [17] into account to en-

sure encrypted transfer of metrics, we

modified our first approach adding an intermediate step via Filebeat.

Our first approach is sketched in Figure 3. Here, the aggregation container collects
information from Condor and cAdvisor forwarding them directly to a Logstash node
within our ELK Stack for further processing and storage in Elastic Search.

To comply with the European Data Protection rules, we allow for sensitive data only
to be transmitted encrypted. As we use mainly Filebeat and other Beat shippers as
log and information forwarders, we use our existing PKI infrastructure as certificate
basis to establish encrypted channels from our batch nodes to Logstash parsing nodes
or Elastic Search database nodes. Since using the existing PKI with Logstash proved
to be cumbersome, we took a shortcut. Instead of sending the extended information
directly from the aggregation container to ElasticSearch, we write the extended in-
formation in a file and attach a Filebeat to the file. Figure 4 sketches both possible
ways for forwarding the data, directly or encrypted via the intermediate Filebeat.

o
>
Q.
<.
1%
o
=2
PR ———

Jm_.

i ElasticSearch,
intial Classads, Logstash,...
envvars 2 [u

LS

job details

sases L

~ =

Figure 3. Combining job information from a cAdvisor container instance
with batch system details in an aggregation container and forwarding the ex-
tended job information directly to Elastic Search or for further processing to
a separate Logstash instance.

4 Deployment

We deploy the cAdvisor and the aggregation containers via CVMFS. As the contain-
ers are self-contained (except requiring a local installation of Singularity), we can
avoid building packages for different distributions and can use the already existing
distribution infrastructure.

Both containers need to be run with root privileges as they need to have access
to the process and cgroup information in the virtual file systems as /proc and
/sys/fs/cgroup. Since we mount the host file system only as a read-only bind
mount, the security implications are assumed to be limited.

The cAdvisor container expects the host namespace mounted under /rootfs® and
can be initiated directly or as Singularity instance '°. We run the cAdvisor container

9as cAdvisor needs to read basic process information, virtual file systems as /proc or

/sys/fs/cgroup (or other cgroup mounts) need to be readable, we bind / read-only onto “/rootfs”.
10 /usr/bin/singularity run -bind /:/rootfs:ro /cvmfs/grid.desy.de/container/cadvisor

EPJ Web of Conferences 214, 07008 (2019) https://doi.org/10.1051/epjcont/201921407008
CHEP 2018

Grafana

node Logstash
ISON lllﬁ:

JSON ElasticSearch ﬁ
l Kibana
aggregator J
enc @
[] |
J

Figure 4. Paths from the aggregation container for sending the job details
to the ElasticSearch instance. Either directly or taking a detour over a local
file for an encrypted transport via the established Filebeat infrastructure to
comply with the GDPR.

I
o
o
o
o
1]

o)

=2

as a persistent systemd unit after a node’s network start-up with the paths in CVMFS
as requirement.

For the aggregation container, we bind mount only the necessary directories. To
take different cgroup implementations/mount points of the different kernel genera-
tions into account, the aggregation container expects the cgroup virtual file system
to be mounted on a dedicated mount point. For the operating mode of dumping
the job information into a file for Filebeat, a writeable mount shared with the host
namespace is necessary. If no output paths are given as parameters, it is assumed to
send the job data directly to a end point '*. A timectl unit regularly runs the aggre-
gation container as a one-time systemd unit with the cAdvisor unit as dependency.
Additional information to enable environment variables for changing the container’s
default behaviour can be obtained via singularity help.

Since we encountered a number of nodes with stalled CVMFES repository mounts when
running the containers as services, we additionally deploy an auxiliary unit to prevent
the repository mount point to be unmounted'2.

5 Outlook

Instead of reading HTCondor batch system details from the jobs’ and PIDs’ infor-
mation in the (virtual) file systems, the HTCondor tool condor_who could be a more
direct and less error prone way to collect the jobs’ information on a node. Further-
more, implementing our own Beat [18] for encrypted transmission instead of using an
intermediate Filebeat as stop-gap would be advisable.

Our approach could be generalized to other batch systems (apart from HTCondor)
by rewriting and sourcing our code into separate classes, which would also make the
code maintenance easier.

11 /usr/bin/singularity exec -bind /var/log/condor/jobmon:/var/log -bind
/sys/fs/cgroup:/sys/fs/cgroup:ro -bind /sys/fs/cgroup:/cgroup:ro
/cvmfs/grid.desy.de/container/condormon.d /usr/local/bin/condor_services_logstash.py
-json /var/log/jobs.stats -stderr /var/log/jobs.err

12 /cvmfs/cernvm-prod. cern.ch/extras/cvmfs_block /cvmfs/grid.desy.de

6

EPJ Web of Conferences 214, 07008 (2019) https://doi.org/10.1051/epjcont/201921407008
CHEP 2018

References

[1] D.Thain, T. Tannenbaum and M. Livny, Concurrency - Practice and Experience
17, 323-356 (2015)

[2] HTCondor homepage!® https://research.cs.wisc.edu/htcondor/

[3] M. Jette, A. Yoo and M. Grondona: “SLURM: Simple Linux Utility for Resource
Management” Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP) (2003), 44-60

[4] Google cAdvisor: https://github.com/google/cadvisor

[5] Sylabs.io Singularity: https://www.sylabs.io/

[6] CernVM File System: https://cernvm.cern.ch/portal/filesystem

[7] T. Finnern “Status of DESY Batch Infrastructures”, HEPiX Fall 2015 at
Brookhaven National Laboratory BNL (2015)
http://pubdb.desy.de/record/275834/files/DESY_Th.Finnern-
_BatchInfrastructures.pdf

[8] Andreas Haupt, Y. Kemp: “The NAF: National Analysis Facility at DESY”,
J.Phys.Conf.Ser. 219 (2010) 052007

[9] IBM Spectrum Scale technology (previously GPFS) http://www-03.ibm. com/-
systems/storage/spectrum/scale/index.html

[10] dCache https://www.dcache.org/

[11] The JavaScript Object Notation (JSON) Data Interchange Format
https://tools.ietf.org/html/rfc8259

[12] ElasticSearch: RESTfull, Distributed Search & Analytics
https://www.elastic.co/products/elasticsearch

[13] Apache Lucene https://lucene.apache.org/

[14] cAdvisor: Exporting cAdvisor Stats to ElasticSearch
https://github.com/google/cadvisor/blob/master/docs/storage/-
elasticsearch.md

[15] Kibana: Explore, Visualize, Discover Data
https://www.elastic.co/products/kibana

[16] Docker: Build, Ship, and Run Any App, Anywhere https://www.docker.com/

[17] European Comission regulation 2016/679: EU data protection rules
https://ec.europa.eu/commission/priorities/justice-and-fundamental-
-rights/data-protection/2018-reform-eu-data-protection-rules_en

[18] Creating a New Beat https://www.elastic.co/guide/en/beats/-
devguide/current/new-beat.html

13For all URLs memento snapshots have been preserved on archive.org. To get each URL’s
document version as seen during writing, call the original URL under the 20181029 timestamp, i.e.,
https://web.archive.org/web/20181029/0riginal -url

7

