EPJ Web of Conferences 245, 07003 (2020) https://doi.org/10.1051/epjconf/202024507003
CHEP 2019

Consolidating the interactive analysis and Grid infrastruc-
ture at DESY.

Christoph Beyer!©, Thomas Finnern! . Martin Flemming' ©, Andreas Gellrich' |,
Thomas Hartmann'* (@, Yves Kemp!, ©, Birgit Lewendel'! (&, Johannes Reppin' (@,
Krunoslav Sever', ©, Sven Sternberger! (©, and Christian Voss'

'DESY, NotkestraBe 85, D-22607 Hamburg, Germany

Abstract. Within WLCG, the DESY site in Hamburg is one of the largest Tier-2
sites with about 18500 CPU cores for Grid workloads. Additionally, about 8000
CPU cores are available for interactive user analyses in the National Analysis
Factory [NAF]. After migrating these two batch systems onto a common HT-
Condor based set-up during the previous four years, we recapitulate the lessons
learned during the transition especially since both use cases differ in their work-
loads. For Grid jobs start-up latencies are negligible and the primary focus is
on an optimal utilization of the resources. Complementary, users of the NAF
expect a high responsiveness of the batch system as well as the storage for in-
teractive analyses. In this document, we will also give an outlook to future
developments and concepts for the DESY high-throughput computing. In the
ongoing evolution of the HTC batch system, we are exploring how to integrate
anonymous jobs with the batch system as back-end for Function-as-a-Service
workflows as well as an option for dynamic expansions to remote computing
resources.

1 Introduction

DESY’s main compute resources at the Hamburg site consist of two clusters. One system is
the high-performance “Maxwell” cluster for memory-limited and low latency tasks such as
online reconstruction of data from the European XFEL or PETRA III beamlines as well as
complex simulations. This cluster operates with the SLURM scheduler and has primarily a
per node scheduling policy and a low-letency interconnect between nodes. For production
tasks and user analyses the complementary high-throughput computing HTC cluster operates
with a per job requirement policy and with ethernet as interconnect between nodes. Here the
aim is on an optimal utilization of resources. The HTC batch cluster is based on HTCondor
[2] and serves two main user groups.

One user group consists of high-energy physics communities like ATLAS, Belle II or
CMS. Workloads from these communities are predominantly production-like tasks and are
brokered through the Worldwide LHC Computing Grid. Such Grid jobs do not require short
start latencies and are mostly of a few common job types of like CPU-intensive simulations
or I/O bound reprocessing jobs.

*e-mail: thomas.hartmann@desy.de

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0002-0020-819X
https://orcid.org/0000-0001-2345-6789
https://orcid.org/0000-0001-2345-6789
https://orcid.org/0000-0003-0974-6231
https://orcid.org/0000-0003-4891-4584
https://orcid.org/0000-0001-9576-7850
https://orcid.org/0000-0002-8290-1843
https://orcid.org/0000-0001-2345-6789
https://orcid.org/0000-0002-9418-7974
https://orcid.org/0000-0001-2345-6789
https://orcid.org/0000-0002-9952-9072

EPJ Web of Conferences 245, 07003 (2020) https://doi.org/10.1051/epjconf/202024507003
CHEP 2019

The other user group is individual users from the same high energy physics communities.
These users run their jobs individually and their job requirements on CPU, I/O, memory or
latency tend to vary much more than Grid workloads. User expectations range from immedi-
ate starts of minimal jobs with run times of a few seconds to large tasks in the order of CPU
months.

In this paper we describe how we consolidated over the last years the HTC batch cluster
to cover both HTC user groups as well as the lessons learnt.

As the HTC clusters are suitable for a broad range of workloads, a number of services
and policies have been added over the years. For example, we dynamically run user Jupyter
notebooks [4]] as HTC jobs and use the NAF cluster to offload the user notebooks. Also we in-
vestigate dynamic Apache Spark clusters [5]] offloading the Spark workers to the HTC cluster
as computing back-end. Due to the flexibility of the cluster, we investigate the HTC cluster as
back-end for a light-weight Function-as-a-Service (FaaS) application. Since the FaaS engines
are optimized for fast, low-latency responses, we aim to offload heavy computational tasks to
the HTC batch system. As such we aim to make massive computing power available within
the FaaS framework as well as extend the batch HTC cluster to function-like workflows.

2 HTC Batch Cluster Set-Up

The HTC batch cluster consists of computing nodes dedicated to the Grid production-like
workloads and end user analyses within the NAF. We migrated the previous Grid cluster,
based on MySched [6], to HTCondor in 2015 and migrated in 2017 the previous NAF cluster
from PBS to HTCondor.

With both use cases on the same technical base, the original intention is to completely
merge both use cases without differentiating between both job classes.

2.1 Workload Patterns

Figures[Ta) and [Tb]show the utilization of HTC cores dedicated to Grid and end user analyses.
The differences in their utilizations is obvious. The Grid resources are in use for >95% of
the time and the resources distribution to the user groups is quite constant. In contrast, the
user jobs within the NAF context are much more variable and individual users’ and groups’
can change their computing demand significantly over short time periods. Some groups/users
show a more production-like usage, while other groups/users show clear spiking behaviours
in their need for computing resources.

As example for resource utilizations of individual jobs, Figure 2] shows the CPU usage of
Grid jobs on a batch node over one day. In general, such Grid jobs tend to have run times
with at least one hour and recurring usage patterns, such as CPU or 1/O intensive tasks.

In contrast, user jobs within the NAF can range from arrays of jobs with run-times of a
few seconds to jobs, that run multiple days. To avoid blocking resources for too long, we
enforce a maximum job runtime of one week as the aim of the NAF is to allow interactive
workflows as well. Also myriads of short jobs pose a challenge. Millions of jobs submitted
by a user in one round can for one overload the batch system’s negotiation capacity. And
short jobs can be in general a significant source for inefficiencies if their run times are shorter
than a matchmaking cycle. To intercept such adventurous user behaviour, we configured the
HTCondor start daemons on the NAF batch nodes to keep computing slots open for a user for
a few minutes. As thus a batch node’s daemon will attract and run subsequent short jobs by
the same user reducing the brokering overhead for jobs with runtimes less than the negotiation
cycle.

EPJ Web of Conferences 245, 07003 (2020) https://doi.org/10.1051/epjconf/202024507003
CHEP 2019

Grid workflows rely on WAN protocols like http, xrootd or gridFTP for reading or writing
files. As such, staging files within the job is common for processing. In contrast, individual
users assume a global namespace with all storages being available on all nodes. We provide
different types of storage types on the NAF ranging from home-directories over AFS, a fast
scratch space based on IBM Spectrum Scale and for long-term storage dCache instances
[14] per major user group. The scratch space and long-term storage are mounted via NFSv4
and NFSv4.1, respectively, on all user facing nodes via TCP/IP over ethernet. Like for job
brokerage, user access patterns can be straining to the storage systems. For example, users
could happen to assume, that massive parallel r/w accesses to single files is possible. To
react to such patterns, we need to careful hardening of the systems. On the client side, also
the NFS4 driver implementations in older Linux kernels <3.10 showed to be not as stable
as more modern Linux releases. Since some users still depend on Scientific Linux 6, we
are encouraging users to move to containers to ease the necessary transition to more current
Linux distributions.

running Jobs peg Group over all Scheduler

e =cms = desy —ic =Iich =ops atas blle =crms ==desy —ic =Ihch =ops - bele =desy =ops ==desy =Cluste: CPUs fee

(a) Grid workloads. (b) User analyses.

Figure 1: Utilization of the HTCondor batch clusters over two months.

Figure 2: Aggregated CPU utilization of Grid jobs on a batch node over 24 hours.

2.2 Cluster Consolidation

We initially envisaged a complete consolidation of Grid and NAF into a single HTCondor
instance. We assumed that we can run Grid as well as user workflows on the same nodes and

EPJ Web of Conferences 245, 07003 (2020) https://doi.org/10.1051/epjconf/202024507003
CHEP 2019

profit from the combined entropy of different jobs, i.e., filling between longer running Grid
jobs free resource with shorter user jobs.

However, due to the various challenging user workflows, we decided against running Grid
and NAF user jobs in a fully merged cluster. Thus, we configured the batch nodes to attract
only either Grid jobs or only NAF user jobs but not both.

On the administrative level however, we benefit from HTCondor as the common technical
base. We have optimized the node maintenance and set up & configure the HTCondor cluster
members from the same Puppet [[15]] definitions. Batch nodes running Grid workloads or NAF
user jobs are based on the same Puppet manifests and we differentiate them only in their detail
configuration managed via Hiera [16]] variables. While in principle a mixed workload cluster
would be possible, where batch nodes are grouped by node specific tags into NAF or Grid
workloads. However, due to the fluctuating NAF workload patterns, we keep currently NAF
and Grid workloads explicitly separated.

We had considered flocking clusters to allow jobs from one sub-cluster to overflow into
the other to optimize utilization of resources. But as the Grid resources are mostly fully
utilized, NAF jobs would only very rarely overflow in that direction. Allowing Grid jobs
to overflow to NAF resources would negatively impact the responsiveness. As the NAF re-
sources are already utilized beyond 80% on average, utilizing the remaining free resources
would negatively impact the fast job turn-around that we require for interactive user analyses.
Backfilling of NAF resources with preemptable jobs might be an option. However, preempt-
able jobs still require more than 30s as grace period to shut down properly as experiences
from backfilling our Maxwell HPC cluster has shown.

Thus, we manage the cluster resources through the same infrastructure but keeping the
workloads separate.

3 Access & Authentication

The interface for Grid jobs to the batch system is based on ARC CE 5 [7]. On the NAF side,
users can submit jobs through one or more workgroup servers per experiment group. These
workgroup servers do not submit directly to HTCondor but act as remote submitters to the
actual schedulers. This allows us to be more flexible during maintenances.

While Grid workloads stage their input and output data primarily via network protocols
as http, xrootd or dcap, NAF users expect remote storage resources to be available in the
local namespace. Thus, we mount via NFSv4 the dCache long-term storage instances, a
fast scratch space based on GPFS/IBM Spectrum Scale and the AFS home directories into
the batch nodes’ local namespaces. Access control to these remote file systems is managed
through UIDs/GIDs and AFS tokens, which are derived from Kerberos tickets.

Since Kerberos tickets have limited lifetimes, jobs would be limited to these lifetimes for
remote file I/O operations. To allow users longer queued and running jobs, we added a token
renewal service. Here, a renewal shepherd updates user Kerberos tickets on a regularly basis
on the batch nodes with corresponding user jobs.

4 Jupyter Notebooks

Over the last years, Jupyter notebooks have become a major alternative for accessing com-
puting resources compared to classic approaches like ssh. For to access NAF resources we
have set up a Jupyter hub. Users can initiate on it interactive Jupyter notebooks where the
actual notebook instance is run within a HTCondor job. As our HTCondor nodes are already
intended for NAF user jobs, this allows for a dynamic scaling of notebook resources as the
existing batch infrastructure is already available including storages expected by users.

EPJ Web of Conferences 245, 07003 (2020) https://doi.org/10.1051/epjconf/202024507003
CHEP 2019

An user can spawn a new notebook from the Jupyter hub web user interface. In the
background, a HTCondor job is submitted to the cluster. After start-up of the notebook job,
the URL and token for accessing the notebook instance is handed back to the user. The user
than can then transparently interact with her or his notebook instance through a http browser.

A major challenge was to optimize the responsiveness of the job start. While users can
accept that ordinary batch job can take up to a few minutes, for notebooks users expect a
more immediate start as the offloading to the batch system is intentionally hidden. For this
we have defined a specific jobs class for Jupyter notebooks in HTCondor and on each batch
node we reserve a dedicated slot for this job class. As Jupyter notebooks can be idle for most
of the time, such a slot can in principle be overbooked with respect to the CPU core count per
node. However, the memory usage per job puts a natural limit to overbooking and we rely on
the overall job entropy per node to not require all the requested memory. Thus, we can keep
dedicated slots available for user notebooks and reduce the latency for starting notebook jobs
to be in the order of the negotiation cycle of the HTCondor resource manager.

5 Containerization

Since containerized applications have become the industry solution to bundle a program’s de-
pendencies, we are integrating container support into the HTCondor cluster. Originating from
the High-Performance Computing community, Singularity [18]] turned out to be the preferred
container engine for high-throughput Grid workloads within the HEP community. Singular-
ity’s main advantages are its lightweight design as no long-running daemon processes are
necessary and the possibility to run transportable container images in user space.

5.1 Singularity Integration

When we migrated the batch resources for Grid workloads from the ageing Scientific Linux
6 to CentOS 7 in 2018, we set up a dedicated compute element for legacy applications. Jobs
submitted to the this CE are transparently transformed and started in a Scientific Linux 6 Sin-
gularity container on a CentOS 7 batch node. We host the Scientific Linux 6 Singularity image
as an expanded directory tree in a CVMFS [19] repository for dynamic distribution. This al-
lows legacy users to make use of our CentOS 7 resources while extending their adaptation
time for a full migration to CentOS 7.

For end users on NAF resources, we have added support for Singularity containers as
well. Users can request in their job submission scripts that their job payloads are started in a
Singularity container of their choice. As the end of life of Scientific Linux 6 is nearing at the
end of 2020 and as the popular Python version 2 has already left support, we actively support
our users to migrate their legacy workloads to such container solutions, since we have to
migrate all native Scientific Linux 6 installations to newer releases due to good practise and
compliance rules.

6 Opportunistic Resources

Complementary to the High-Throughput Computing cluster, DESY operates a high-
throughput computing cluster “Maxwell”, that operates on a full node scheduling policy.
Main users are on-site and related photon resources like PETRA-III and the European XFEL
as well as theoretical physics and detector development communities. While the “Maxwell”
cluster is well utilized during data taking periods, in intermediate times nodes can sometimes
be idle for soem time. To opportunistically harvest such free computing resources, we set

EPJ Web of Conferences 245, 07003 (2020) https://doi.org/10.1051/epjconf/202024507003
CHEP 2019

up a dedicated Compute Element to submit HEP workloads. If compute resources are re-
quested by high priority users, these opportunistic jobs have to be evicted within 30s between
a warning SIGTERM and final SIGKILL signal.

Similarly we are investigating on how to best utilize idle resources in our OpenStack
virtualization instance without affecting running virtual machines in their CPU, memory or
disk/network I/O.

7 Outlook

Both, the “Maxwell” HPC cluster and the HTCondor infrastructure, constitute the most sig-
nificant of the computing power at the DESY Hamburg site. We plan to harness these re-
sources as back-end for other internal services as well as to dynamically scale-out to external
resources.

In a scale-out scenario, the simplest approach could be to start HTCondor batch nodes
daemons in dynamically created resources. Such a dynamic daemon would register its avail-
able computing resources to the central HTCondor cluster manager and accept jobs in the
following. Since such resources are not necessarily under complete control of DESY, either
one would need to ensure a trusted authentication and authorisation scheme or find ways to
mitigate potential trust issues.

For on-site resources, one can assume that a common authentication canopy would be
possible. But remote resoruces managed by other entities pose a significant challenge. To
fully trust such remote resources, we would need to manage a complex identity namespace
distributed over all interconnected services, that can range from storage instances with file
ownerships and permissions to identities under which applications are executed. Additional
compexity originates from many external scientists visiting DESY only temporarily.

Currently visiting scientists need to be granted local accounts to access the local compute
and storage resources. In many cases the scientists need such accounts only for a limited time
until the results are evaluated and published. If one could move from dedicated user accounts
to an authorization a token for data taking episode, the risk of an user identity loss could be
mitigated.

Thus, a common approach to handle authentication over distributed local services as well
as as remote resources would be desirable.

7.1 Event-Driven Workflow Integration

In HTCondor complex workflows can be realized with DAGman as meta-scheduler [3]]. How-
ever, DAGman allows only to realize workflows of inter-dependent jobs within HTCondor.
To integrate HTCondor with external events and workflows, a broader workflow engine is
needed.

Classic workflow engines poll states from the connected systems and initiate new actions
based on rules. In contrast, in an event-based scheme the workflow moves from poll to a
push model, where the status change itself initiates a new action. With an event-type mes-
sage as intermediary, a status change in one system can drive complex workflows through
triggers and rule-sets without atomic steps of polling and compiling states. To integrate var-
ious systems into such an event-based workflow set-up, a common message bus is necessary
for exchanging events. Complementary, conditions, triggers and the actual actions in form of
functions require a form a registry.

To realize such a side-wide workflow set-up, we use Apache Kafka [8] as message bus
and Apache OpenWhisk [9] as FaaS platform to connect events and actions.

EPJ Web of Conferences 245, 07003 (2020) https://doi.org/10.1051/epjconf/202024507003
CHEP 2019

7.1.1 dCache Storage Event

Storage events are a prominent example for event-driven workflows. Since version 4.2
dCache allows to announce changes in its namespace and propagated these changes as in-
dividual events via Kafka [[11]. Integrating the dCache Kafka event streams with a FaaS
platform would allows then for automatized workflows. For example, in an event-driven
workflow a dCache instance generates itself a message of a file transfer to have finished,
which then initiates automatically the processing of this file with a pre-registered function.
Receiving such an event, a rule engine evaluates the event with pre-registered rules and ini-
tiates the processing job from a set of registered functions. Thus, recurrent tasks could be
automatized and further chained to complex workflows spanning different systems, which
could be on-side as well as potentially off-side.

In contrast, a classic workflow system would be waiting for a file transfer to finish check-
ing regularly for the transfer status, before submitting a processing job on the file after nu-
merous polls.

7.1.2 FaaS-Offloading

As functions are intended to be light-weight and short running applications, a FaaS platform
like OpenWhisk is not ideal for processing of large amounts of data. Thus, it is advisable
to off-load for any significant data processing onto a better suited batch system. For this,
we integrate a HTCondor cluster into the FaaS platform, where a storage event initiates a
compute jobs submission to the HTCondor cluster. Such a workflow is sketched in Figure 3]
where a function initiates the heavy processing job, which is addressed merely indirectly and
does not need to be called directly. As such it acts like a template generating a compute job
from the pre-registered definition of the function [[10].

7.2 Anonymous Jobs

In all common operating systems, processes are bound to local users and groups. Similar, files
belong to a user and group and possibly more fine grained access control rules. To connect
different storage and compute elements, one would need a common identity namespace or
mapping from one ID namespace to another, where operation authorization is derived from
authentication. Naturally, managing and securing such a global identity and authorization
namespace can be arbitrary complicated as it requires the same and consistent authentication
in all involved elements or a complex mapping.

Moving from authentication to an authorisation based resource control can allow a more
secure set-up and especially more flexible workflows. Especially, anonymous jobs, that are
not tied to a specific identity, would allow to scale-out to external, less trusted resources, e.g.,
dynamically spawned VMs in external clouds or user desktops on the campus.

7.2.1 Authorization Tokens

In a token-based access scheme, usage of compute resources or file access is based only on
the ownership of a certain token. On presenting a token with a specific set of capabilities,
a compute or storage element can grants to the anonymous owner of the token access to its
resources. Since for most tokens schemes capabilities can be fine-grained and restricted, the
actual capabilities can be limited to only the very necessary.

In a FaaS set-up combined with a token access control, only a central token generator and
authentication instance are needed. Here, a template function is set up in the FaaS framework

EPJ Web of Conferences 245, 07003 (2020) https://doi.org/10.1051/epjconf/202024507003

CHEP 2019
L_:| other

event
file \write

flavours

& Storage Event
"o
dCache Tokey, Reqy
storage est
\O autile 1L
N ID - Macaroon
hv f
authz fen.
HTConddr o ID . SciToken
gh Throughput Computing 0“6‘\
batch node o \
- . HTC offload fen.
o\\ !-”:CPQM ‘w - remote submit
schedd/neg FaaS o‘v?k

Figure 3: Storage event based workflow for automatic processing of files through functions
and off-loading to the HTCondor batch system

to generate access tokens on request. It is the only instance, that needs knowledge about iden-
tities and their capabilities regarding resources. On an incoming event, it request on behalf
of the registered identity by its set of rules an authorisation tokens from the corresponding
storage or compute element. Such a tokens can be strictly limited to the needs of the actual
process, e.g., a file token that allows to read just one specific file.

7.2.2 dCache Storage Macaroons

For example, the dCache team [12]] has implemented macaroons [17] as authorization token
scheme since version 4.2. Such a macaroon token can be restricted to various limitations like
specific paths, IP ranges or time frames. The bearer of such a macaroon token then can only
read or write files within the limitations. Since only ownership of a macaroon is relevant, the
identity of the bearer can be irrelevant.

7.2.3 Token-based Jobs

As sketched in Figure 3] we envisage compute jobs that are by their nature anonymous. If the
file I/O is authorized by macaroons and if the submission to a batch system is also managed
through a token, such a job would have no need to run under a dedicated user/group ID. An
anonymous job could be executed on a given, somewhat arbitrary host under a generic user
account with reduced capabilities, which would limit the abuse potential.

Obviously, stripping any authentication requirements from an actual job implies that an-
other stage in the whole workflow has to handle the authentication. Such an authentication
stage has to ensure the validity of the actual user, who defines and initiates the workflow.

EPJ Web of Conferences 245, 07003 (2020) https://doi.org/10.1051/epjconf/202024507003
CHEP 2019

Also the authentication stage needs to use the users credentials to request authorization to-
kens from any remote resources. Thus, a central authentication-to-authorization stage allows
to concentrate sensible data handling to a well defined and limited system - naturally, due to
its sensitivity, it needs to be well guarded and managed with care.

In our current approach, we work on implementing such an authentication-to-
authorisation stage as a set of function in our OpenWhisk framework. Sensible information
like credentials in form of X509 certificates etc. are kept in a Gitlab CI/CD secrets store[20]
to which only dedicated functions have access.

7.2.4 Example Workflow

For example, a user is regularly reprocessing her or his data with a static, rarely changing
program. On a storage event, an authz function requests on behalf of the user from the
dCache storage instance one macaroon token for reading the input file and a second token to
write any output data to a separate, dedicated path.

Followingly, a processing job would be generated receiving the just generated macaroons
to read and writes its in- and output. Since no authentication is required at the processing
stage, the job process itself can run under an anonymous user account, that exists only locally
on final batch node.

By decoupling the input/output from the identity namespace, this would further allow to
more easily scale out to external, less trusted resources. If a malicious actor would intercept
such a token, the harm would be limited to an unintended read of only the input file as well
as writing unwanted output onto the output path, where the potential harm is wasted space
without any option corrupt any other data.

8 Conclusion

With the goal to consolidate high-throughput clusters for Grid and NAF user workloads, we
merged our management infrastructure and reduced significantly the administrative work-
load. Production and user jobs can show quite different usage patterns that each require
specific optimizations to best utilize and protect the batch resources. With the gained experi-
ences, we work on further integrating all computing resources at DESY. As such, workloads
can range from classic high-throughput jobs over user jobs, with a wide field of job patterns,
to high-performance workloads. While these requirements can probably not be solved by
one technical solution, we envisage to ease for users the selection and use of the computing
resources without putting the burden on users to become experts in one or the other technical
product.

Furthermore we are working on integrating a wide range of computing resources into the
DESY compute pool for opportunistic usage.

To make the our computing resources more pervasively available, we actively investigate
novel workflows, where the actual computing process is not actively initialized by a user but
just an inevitable component of an event triggered process chain.

References

[1] For all URLs memento snapshots have been preserved on archive.org. To get each
URL’s document version as seen during writing, call the original URL under the 202001
timestamp, e.g., https://web.archive.org/web/202002/original-url

[2] D.Thain, T. Tannenbaum and M. Livny, Concurrency - Practice and Experience 17, 323-
356 (2015)

https://web.archive.org/web/202001/

EPJ Web of Conferences 245, 07003 (2020) https://doi.org/10.1051/epjconf/202024507003
CHEP 2019

[3] Peter Couvares, Tevik Kosar, Alain Roy, Jeff Weber and Kent Wenger, "Work-
flow in Condor", in In Workflows for e-Science, Springer Press, January 2007
https://research.cs.wisc.edu/htcondor/dagman/dagman.html

[4] Jupyter “The Jupyter Notebook is an open-source web application that allows you to
create and share documents that contain live code, equations, visualizations and narrative
text. ”, https://jupyter.org/

[5]1 Apache Spark “Apache Spark™ is a unified analytics engine for large-scale data pro-
cessing.”, https://spark.apache.org/

[6] A. Gellrich “Job schedul in Grid batch farms”, 2014, Journal of Physics: Conference
Series, volume 503, numer 3, page 032038, doi:10.1088/1742-6596/513/3/032038

[7] Nordugrid ARC CE 5 http://www.nordugrid.org/arc/releases/15.03u20/

[8] Apache Kafka “A distributed streaming platform” https://kafka.apache.org/

[9] Apache OpenWhisk “Open Source Serverless Cloud Platform -Executes functions in re-
sponse to events at any scale” https://openwhisk.apache.org/

[10]OpenWhisk “OpenWhisk Actions” https://github.com/apache/openwhisk/blob/master/docs/actions.md

[11] Paul Millar for the dCache Team “Storage Events: distributed users, federation and be-
yond” https://www.dcache.org/manuals/workshop-2018-05-28-DESY/storage-events.pdf]

[12] Paul Millar for the dCache Team “Macaroons and SciToken”
https://www.dcache.org/manuals/workshop-2018-05-28-DESY/paul4.pdf

[13] IBM Spectrum Scale “Advanced storage management of unstructured data for cloud,
big data, analytics, objects and more” https://www.ibm.com/us-en/marketplace/scale-out-
file-and-object-storage

[14] P. Fuhrmann et al. “dCache, agile adoption of storage technology”, 2012,
Journal of Physics: Conference Series, volume 396, number 3, pages 032077,
https://iopscience.iop.org/article/10.1088/1742-6596/396/3/032077

[15] Puppet “Open source Puppet provides tools to automate managing your infrastructure”
https://puppet.com/docs/open-source-puppet

[16] Puppet: Hiera https://puppet.com/docs/puppet/latest/hiera_intro.html

[17] Arnar Birgisson and Joe Gibbs Politz and Ulfar Erlingsson and Ankur Taly and Michael
Vrable and Mark Lentczner “Macaroons: Cookies with Contextual Caveats for Decentral-
ized Authorization in the Cloud”,2014, Network and Distributed System Security Sympo-
sium https://research.google/pubs/pub41892/

[18] Singularity “Enabling and securing your performance critical applications from the
core, through the cloud, and out to the edge.” https://sylabs.io/docs/

[19] CVMFS “The CernVM File System provides a scalable, reliable and low-maintenance
software distribution service.” https://cernvm.cern.ch/portal/filesystem

[20] Gitlab Secrets https://docs.gitlab.com/charts/installation/secrets.html

10

https://research.cs.wisc.edu/htcondor/dagman/dagman.html
https://jupyter.org/
https://spark.apache.org/
https://iopscience.iop.org/article/10.1088/1742-6596/513/3/032038
http://www.nordugrid.org/arc/releases/15.03u20/
https://kafka.apache.org/
https://openwhisk.apache.org/
https://github.com/apache/openwhisk/blob/master/docs/actions.md
https://www.dcache.org/manuals/workshop-2018-05-28-DESY/storage-events.pdf
https://www.dcache.org/manuals/workshop-2018-05-28-DESY/paul4.pdf
https://www.ibm.com/us-en/marketplace/scale-out-file-and-object-storage
https://www.ibm.com/us-en/marketplace/scale-out-file-and-object-storage
https://iopscience.iop.org/article/10.1088/1742-6596/396/3/032077
https://puppet.com/docs/open-source-puppet
https://puppet.com/docs/puppet/latest/hiera_intro.html
https://research.google/pubs/pub41892/
https://sylabs.io/docs/
https://cernvm.cern.ch/portal/filesystem
https://docs.gitlab.com/charts/installation/secrets.html

	Introduction
	HTC Batch Cluster Set-Up
	Workload Patterns
	Cluster Consolidation

	Access & Authentication
	Jupyter Notebooks
	Containerization
	Singularity Integration

	Opportunistic Resources
	Outlook
	Event-Driven Workflow Integration
	dCache Storage Event
	FaaS-Offloading

	Anonymous Jobs
	Authorization Tokens
	dCache Storage Macaroons
	Token-based Jobs
	Example Workflow

	Conclusion

